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Figure 1: VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically syn-
thesized by our method in two different examples. Bottom: pants try-on synthesized by our method. Note how our method preserves the
identity of the person while allowing high detail garment try on.

Abstract

Given an image of a target person and an image of an-
other person wearing a garment, we automatically generate
the target person in the given garment. At the core of our
method is a pose-conditioned StyleGAN2 latent space inter-
polation, which seamlessly combines the areas of interest
from each image, i.e., body shape, hair, and skin color are
derived from the target person, while the garment with its
folds, material properties, and shape comes from the gar-
ment image. By automatically optimizing for interpolation
coefficients per layer in the latent space, we can perform
a seamless, yet true to source, merging of the garment and
target person. Our algorithm allows for garments to deform
according to the given body shape, while preserving pattern
and material details. Experiments demonstrate state-of-the-
art photo-realistic results at high resolution (512× 512).

1Work done while the first author was an intern at Google Research.

1. Introduction

Online apparel shopping has become increasingly popu-
lar due to its convenience, and a large variety of products.
Virtual try-on—the ability to computationally visualize a
garment of interest on a person of one’s choice—may am-
plify the shopping experience, as well as help reduce the
environmental costs due to overproduction and returns.

A useful fashion try-on, however, requires high de-
tail and high quality visualization, ideally indistinguish-
able from a photograph in a magazine. As a step towards
this goal, we introduce a novel controllable image gener-
ation algorithm, named VOGUE, which seamlessly inte-
grates person-specific components from one image with the
garment shape and details from another image. Our ex-
perimental evaluation demonstrates state of the art photo-
realistic results at the high resolution of 512× 512 pixels.

We are motivated by the photo-realism and high resolu-
tion results of StyleGAN [20, 21] for faces, and use it as our
starting point for fashion try-on. We first train a modified
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StyleGAN2 network, conditioned on 2D human body pose,
on 100K unpaired fashion photographs. (See discussion of
paired vs. unpaired training data in section 2.) Once the
model is trained, it remains fixed. Given a pair of images—a
person image and a garment image— our method automat-
ically finds the optimal interpolation coefficients per layer.
Interpolation coefficients are applied on the latent represen-
tations of the two input images, and are used to generate a
single output image where the person from the first input
image is wearing the garment from the second image. Fig-
ure 1 demonstrates the results.

By optimizing for interpolation coefficients per layer, we
are able to achieve semantically meaningful and high qual-
ity results. Unlike previous general GAN editing methods
[6, 2], which require manual choice of noise injection struc-
ture or of clusters and fixed parameters for all layers, our
method automatically computes the best interpolation coef-
ficients by optimizing a loss function designed to preserve
the identity and pose of the person while switching only the
garment. Compared to try-on specific literature [22, 24, 30],
our method outperformed the state of the art with respect to
photo-realism and quality of the results. Extensive compar-
isons and ablation studies provide insight into why VOGUE
outperforms others on the same task.

Our key contribution is an automatic interpolation op-
timization algorithm for fashion try-on from a single im-
age, particularly pushing the limits of photo-realism and
magazine-like quality for try on.

2. Related Work
Virtual Try-On (often abbreviated as VITON and

VTON) has seen tremendous progress in the recent years.
Given a pair of images (person, garment), the original VI-
TON method [13] synthesizes a coarse try-on result, later
refined, and warped with thin plate splines over shape con-
text matching [3]. CP-VTON [30] adds geometric align-
ment to improve the details of the transferred garment. [17]
incorporates adversarial loss in [30] to further improve im-
age quality. PIVTONS [5] applies a similar concept on
shoes rather than tops and shirts. [7] extends [13] to syn-
thesize try on in various body poses. Further, Garment-
GAN [26] separates shape and appearance to two genera-
tive adversarial networks. SieveNet [18] introduces a du-
elling triplet loss to refine details. ACGPN [32] aims to
preserve the target person’s identity in addition to the trans-
ferred clothes details, by accounting for semantic layout.
SwapNet [27] first warps and then applies texture to trans-
fer full outfits, rather than individual garments.

[22] and [33] incorporate learnings from StyleGAN [20]
into try-on. ADGAN [22] conditioned the model on body
pose, person identity, and multiple garments, where a sep-
arate latent code is generated to each of those components,
and then combined into a single result by borrowing the

needed parts from each image. This typically results in
good transfer of uniform colors and textures but fails to syn-
thesize the correct garment shape and texture details. [33]
similarly conditions on pose and clothing items, but not for
person’s identity.

A key assumption of all above methods is availability of
large paired training data, e.g., photographs of same person
in various body poses wearing the same garment, or photo-
graph of a person wearing a garment paired with separate
garment images. Paired training data provides a ground-
truth and a simpler design of losses. It is, however, a big
limitation that tampers with quality and photo-realism of
the results, since such paired data hard to obtain in large
quantities required to train deep networks and particularly
to generalize to the high variability of patterns, shapes, and
details appearing in garments.

O-VITON [24] works with unpaired training data. It
contains three stages: shape generation network, appear-
ance generation network, both based on pix2pixHD [31],
and an appearance refinement step. The shape and appear-
ance generation network outputs are compared with the in-
put image and segmentation in the loss function, the ap-
pearance refinement step is applied to each garment sep-
arately. The separation to three stages is what allows to
work with unpaired data. Our algorithm, too, works with
unpaired data, but with the key difference of doing all three
stages in a single optimization within [21] architecture. By
eliminating the need for three separate steps, as well as our
StyleGAN2 conditioning, we enable higher photo-realism.

Related to our method are also conditional GAN net-
works [23, 4], and GAN editing methods [25, 2, 6, 15, 8, 1].
[2] uses a grid structure to inject noise into a GAN to
achieve spatial disentanglement on a grid, and then edit
the image. [6] further accounts for spatial semantics by
K-means clustering the StyleGAN activation tensors, then
searches for interpolation coefficients to do localized se-
mantic editing. The latter is a baseline for our proposed
algorithm. All those algorithms are not focused on apparel
try-on, but mostly on face photos. Running those for try on
does not produce good results as we show in the ablation
part.

3. Method
In this section, we describe our VOGUE optimization al-

gorithm for garment transfer. Given a pair of images gener-
ated by StyleGAN2, we show how to optimally interpolate
between the generated images to accomplish try-on. We
also describe how to use the network for any image, via
projection of the image to our latent space, and then run-
ning VOGUE.

Problem Formulation Given an image Ip of a person p
in some outfit, and an image Ig of a different person in a
garment g, we aim to create a photo-realistic synthesis of
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Figure 2: The try-on optimization setup illustrated here takes two latent codes z+1 and z+2 (representing two input images)
and a pose heatmap as input into a pose-conditioned StyleGAN2 generator (gray). The generator produces the try-on image
and its corresponding segmentation by interpolating between the latent codes using the interpolation-coefficients q. By
minimizing the loss function over the space of interpolation coefficients, we are able to transfer garment(s) g from a garment
image Ig , to the person image Ip.

the person p in garment g.
The first step of our algorithm is to train a pose condi-

tioned StyleGAN2, which can generate a photorealistic im-
age of a person in some outfit given a 2D pose skeleton. We
train our model to output RGB images as well as the gar-
ment and person segmentation in the image. Given a trained
model, the second step is to optimize for interpolation coef-
ficients at each layer to get the desired try-on result image
It where person p will appear in garment g.

3.1. Pose-conditioned StyleGAN2

Generative Adversarial Networks (GANs) [12] have
been shown to synthesize impressive images from latent
codes. StyleGAN and StyleGAN2 [20, 21] in particular
demonstrated state-of-the-art photo-realism on face images.
The idea to combine progressive growing [19] and adaptive
instance normalization (AdaIN) [16, 10, 9, 11] with a novel
mapping network between the latent space, Z, and an in-
termediate latent space, W , encouraged disentanglement of
the latent space. Transforming intermediate latent vector
w ∈ W into style vectors s further allowed different styles
at different resolutions. Motivated by those advances we
choose StyleGAN2 as our base architecture.

We train a StyleGAN2 model on fashion images, with
two key modifications:

• We replace the constant 4x4 block at the beginning of
the generator with an encoder that takes as input pose
keypoints represented as a heatmap. The keypoints
are converted to a Np channel heatmap representation
whereNp is the number of pose keypoints (in our case,
17). Channels corresponding to keypoints that fall out-
side the cropped image are filled with zeros.

• We train our StyleGAN2 to output segmentations at
each resolution/layer in addition to RGB images.

Figure 3 shows our modified StyleGAN2 architecture.

Figure 3: We trained a pose conditioned StyleGAN2 net-
work, that outputs both an RGB image as well as a segmen-
tation of the image in each layer. Pose heatmaps are en-
coded and inputted into the first style block in StyleGAN2
instead of a constant input.

3.2. Try-On Optimization

Given the trained model, we can generate a variety of
images (along with the corresponding segmentation) within
the latent space of the network with the desired 2D pose.
Conversely, given an input pair of images, we can ”project”
the images to the latent space of the generator by running
an optimizer to compute the latent codes that minimizes the
perceptual distance between the input image and the im-
age from the generator. Linear combinations of these latent
codes will produce images that combine various character-
istics of the pair of input images. The desired try-on image
where the garment from the second image is transferred to
the person from the first image lies somewhere within this
space of combinations. Let us denote by σp and σg the style
scaling coefficients per layer for person and garment images
respectively. Interpolation between the style vectors can be
expressed as:

σt = σp +Q(σg − σp) (1)
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where Q is a positive semi-definite diagonal matrix. The el-
ements along the diagonal form a query vector, q ∈ [0,1].
Generating the try-on image can be accomplished by recov-
ering the correct interpolation coefficients q. [6] proposes a
greedy algorithm to choose binary query vectors that maxi-
mize changes within the region of interest while minimizing
changes outside of the region of interest.

We also optimize over the query vectors but instead of
greedy search for a set of coefficients using a fixed budget
for every layer as in [6], we propose an optimization-based
approach that allows for more flexibility in the choice of
query vectors. Our loss terms are tuned to the try-on prob-
lem of preserving the identity of the person while switching
the garment of interest. The loss functions in our optimiza-
tion guide our method to learn continuous query vectors that
enable more localized semantic edits.

Let Sp, Sg , and St be the segmentation labels correspond-
ing to Ip, Ig , and It. Figure 2 presents the flow of our al-
gorithm. We modify our pose-conditioned StyleGAN2 to
take in intermediate latent codes z+1 and z+2 for both the
person and garment images. Style interpolation (Eq. 1) oc-
curs in every style block and the generator outputs the try-
on image and segmentation. The outputs are combined to
calculate the loss terms which are optimized over the space
of interpolation-coefficients q until convergence. Our loss
function is defined as follows:

L = α1Llocalization + α2Lgarment + α3Lidentity (2)

where the αs are weights applied the loss terms and hyper-
parameters for our method. At each iteration, the q vector
values are clipped to [0, 1] using a sigmoid after applying
the updates. Each of the loss terms is described below.

Editing-localization Loss The editing-localization loss
term encourages the network to only interpolate styles
within the region of interest. Similar to [6], we define a
term, M, that measures spatial overlap between the semantic
regions in the image and the activation tensors, ANxCxHxW,
where N is the number of images, C is the number of chan-
nels, and H, W are the image dimensions. [6] uses k-means
on the activation tensors to assign semantic cluster member-
ships to the activation tensors. Instead, we use the segmen-
tation outputs from our network to define semantic cluster
memberships. The segmentations are converted to binary
cluster membership heatmaps, U ∈ {0, 1}NxKxHxW, where
K is the number of segments. For each layer, the activation
tensors are normalized and the heatmaps are downsampled
to the correct resolution. M is then computed as:

Mk,c =
1

NHW

∑
n,h,w

A2 � U (3)

M is computed for both the person (Ip) and garment (Ig)
images. We then calculate the contribution of each channel
within a particular layer for a particular segment of interest,
i, at every layer:

mi
p = max

k
(Mp −M i

p) (4)

mi
g = max

k
(Mg −M i

g) (5)

mi = max(mi
p,m

i
g) (6)

High values in mi represent the channels that correspond to
segments other than i in either image. Since we only want to
change the segment of interest, i, we want the interpolation
coefficients for all other segments to be low. Therefore the
editing-localization loss term is computed as:

Llocalization =
∑

mi � q (7)

Garment Loss To transfer over the correct shape and
texture of the garment(s) of interest, we use VGG embed-
dings [28, 34] to compute the perceptual distance between
the garment areas of the two images. Given the segmen-
tation labels Sg and St corresponding to the garment and
try-on result images, we compute binary masks for the gar-
ment in both images. We apply the mask to the RGB images
by element-wise multiplication, followed by blurring with a
gaussian filter and downsampling to 256 x 256 before fi-
nally computing the garment loss Lgarment as the perceptual
distance between the two masked images.

Lgarment = d(IGarment Masked
g , IGarment Masked

t ) (8)

where d(·, ·) measures the perceptual distance by calculat-
ing a weighted difference between VGG-16 features.

Identity Loss The identity loss term guides the network
to preserve the identity of the person p. We use the hair
and face regions of the images as a proxy for the identity of
the person. Using the segmentation labels Sp and St cor-
responding to the person image Ip and the try-on image It,
we compute the identity loss following the same procedure
as the garment loss above.

Lidentity = d(I Identity Masked
g , I Identity Masked

t ) (9)

Projection To run our algorithm on real images, we first
project the real images into an extended latent space, Z+.
We use an optimization to learn a latent vector, z, per layer
that results in a final image that best captures the identity
and garment details of the original image. The optimization
uses a perceptual loss [34] to find the optimal latent vectors.
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Figure 4: Results from our method for shirt try-on. Note how try-on works well with different body shapes, and adjusts to
the new poses. Each row corresponds to a different try on result. Columns represent person, garment, and result.
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Figure 5: Results from our method for pants try-on. Note
how try-on works well with different body shapes, and ad-
justs to the new poses. Each row corresponds to a different
try on result. Columns represent person, garment, and re-
sult.

4. Experiments
In this section, we provide implementation details, com-

parison to related works, ablation study, and results from
our method on diverse examples.

Dataset We collected a dataset of people wearing vari-
ous outfits, and partition it into a training set of 104K im-
ages, and a test set of 1600 images. The resolution of all the
images is 512x512. The dataset includes people of different
body shapes, skin color, height, and weight. Additionally
the pepole in our dataset can appear in any pose. We focus
in this work on females only, and perform try on for tops
and pants.

Implementation details Our conditional StyleGAN2
network was implemented in TensorFlow. We trained it for
25 million iterations, on 8 Tesla v100 GPUs, for 12 days.
Once the network was trained, we performed a hyperparam-
eter search for the optimization loss weights. We present all
parameters in the supplementary material.

Results Figure 1, Figure 4, and Figure 5 show try-on
results produced by our method. Note the diversity of the

Figure 6: To experiment with real input images (rather than
StyleGAN generated) we have used standard projection al-
gorithm. Here we show typical results of projection on our
images. Is it useful to see the effect of projection on the
quality of the garment representation, since it directly im-
pacts the final try on result. Improving the projection is
independent of our optimization algorithm and is part of fu-
ture work.

people wearing the items, how the identity of the person is
preserved even though the try on output is synthesized from
scratch, and the details on the transferred item (note neck
lines, pattern, sleeve length, color). It is also worth not-
ing the garment folds appearing on the new person, since
that person might have different body shape, or pose. We
present try on of both pants and shirts. Our method is also
successful in preserving the skin-tone of the person in the
input image though the garment image may contain a per-
son with a different skin-tone. In the case of transferring a
shorter sleeve length garment, our method synthesizes the
arms appropriately though they were not visible in the input
image.

4.1. Comparison to Virtual Try-On Methods

We compare to two state-of-the-art virtual try-on meth-
ods with code available: ADGAN [22] and CP-VTON [30].
We use the available pre-trained weights for ADGAN and
CP-VTON since they require paired data to train, which we
don’t have. We compare to both qualitatively and quantita-
tively.

Image projection on StyleGAN latent space The first
step of try-on for our VOGUE method is projecting the gar-
ment and person image into the latent space of StyleGAN2.
The quality of projection impacts the final try-on images.
In Figure 6 we show examples of real images and the cor-
responding projected images. We use the standard Style-
GAN2 projection method extended to the Z+ space as de-
scribed in 3.2. Note that the projection used is independent
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Figure 7: Qualitative comparison with [30] and [22]. Each
row represents a different pair of inputs. Note the difference
in garment quality, adjustment to difference in body shape,
skin color, and pose. VOGUE outperforms the state of the
art significantly. Please refer to supplementary material
for more results.

of our optimization method (see Figure 4 for interpolation
without projection). Therefore improving projection as fu-
ture work would continue to improve our final try-on im-
ages.

Qualitative Evaluation Figure 7 compares virtual try-
on results produced by our VOGUE method with those pro-
duced by the baselines for various shirt and body types. Our
method is able to synthesize the correct shape of the shirt
and preserve high frequency details. In cases where the tar-
get shirt has a shorter sleeve while the person is wearing a
longer sleeve, VOGUE is able to accurately synthesize the
arms and preserve body shape and skin color. In compar-
ison, ADGAN is unable to synthesize the correct shape of
the try-on shirt (e.g. neckline). ADGAN synthesizes the
correct color of the shirt and coarse identity information,
but is unable to preserve details for both the garment and
identity. There are also several artifacts that prevent the try-
on image from being photo-realistic. CP-VTON copies the
hair and face of the person to the try-on image, but is un-
able to accurately synthesize the person’s body. CP-VTON
preserves the color of the garment, however the final try-on
is typically blurry.

Quantitative Evaluation We evaluate the results us-
ing quantitative measures, Fréchet Inception Distance (FID)
[14] and an embedding similarity score [29]. Table 1 shows
the FID and embedding similarity results. The experiments
were run over 800 images for each algorithm. We can see
that our method outperforms others on FID score, which
represents photorealism. For calibration, we have also cal-

Model FID ↓ ES ↑
ADGAN [22] 66.82 0.22

CP-VITON [30] 87.0 0.27
Our Try-on on Real 32.21 0.32

Real Images 11.83 N/A

Table 1: Quantitative measure of our method and the base-
lines. We use two metrics to compare the methods and types
of images: FID to evaluate photorealism and ES (Embed-
ding similarity) to evaluate quality of try-on or how similar
is the result to the input in the garment part.

Figure 8: Failure cases for our method. Our method typi-
cally fails when garment detail or pose wasn’t represented
well in the training dataset.

culated FID scores for a set of real images. The embedding
similarity score measures the distance between embeddings
of the original garment and the garment in the try-on im-
age. Our method has the highest similarity which reflects
our method’s ability to preserve the shape and details of the
try-on garment.

4.2. Ablation study and failure cases

Figure 8 shows examples of when our VOGUE method
fails to correctly synthesize try-on images. Rare poses (not
well represented in the data) or garment details cause the ap-
pearance of the garment to change when transferred to the
target pose. We suspect that the results for those would im-
prove with better representation of diverse garments in the
training dataset and subsequently in the latent space. Simi-
larly, as discussed above, projection of real images to latent
space has artifacts which affect the try-on result. Once pro-
jection is improved, our method will be able to generate true
to source results.

Figure 9 shows how our result changes with changes to
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Figure 9: Ablation study showing the importance of each
loss term in the optimization. The study is done on real
images.

Figure 10: Ablation study: we compare greedy search for
interpolation coefficients as in [6] to our optimization ap-
proach. We observe that details like sleeve length and pat-
tern are preserved much better with the per layer optimiza-
tion approach. Note that we do not compare directly to [6]
since we also modified the StyleGAN architecture to in-
clude segmentation and condition on pose.

the loss function. We run this ablation study on real im-
ages and demonstrate that each loss term is necessary for
a photo-realistic result that preserves garment characteris-
tics and person identity. The localization loss prevents the
optimization from editing semantic regions outside of the
garment of interest. The identity loss preserves the face and
hair. The garment loss transfers the shape, color, and texture
of the garment.

Figure 10 demonstrates the difference between greedy
search for interpolation parameters as in [6] and per layer
optimization (ours). We are not comparing directly to [6]
since we also modified the architecture of StyleGAN to
include segmentation and condition on pose, however the
comparison between greedy search and our optimization is
valuable. Our method is able to preserve the shape, color,
texture, and details of the region of interest (sleeve length)
without affecting the other semantic regions. For example,

VOGUE can transfer light colored pants to a person origi-
nally wearing dark jeans without lightening the rest of the
image. On the other hand, VOGUE can change bordering
regions of interest in ways that are consistent with the region
of interest being transferred. For example, when transfer-
ring a short-sleeved shirt to a person with a longer-sleeved
shirt, VOGUE synthesizes skin to show more of the arms in
the final try-on image.

5. Discussion
In this paper, we have presented an optimization method

for high quality try-on. We use the power of StyleGAN2
and show that it is possible to learn internal interpolation
coefficients per layer to create a try-on experience. Our
method outperforms the state of the art. We have demon-
strated promising results in high resolution on a challeng-
ing task of try-on. While promising, our method still fails
in cases of extreme poses and underrepresented garments.
Similarly, when projection of real images is unsatisfactory
it directly affects the interpolation results, since interpola-
tion assumes perfect projection. It is a direction for future
research to improve projection of real images onto Style-
GAN latent space.

The try-on application is designed to visualize fashion
on any person, including different skin tones, body shapes,
height, weight, and so on, in the highest quality. How-
ever, any deployment of our methods in a real-world set-
ting would need careful attention to responsible design deci-
sions. Such considerations could include labeling any user-
facing image that has been recomposed, and matching the
distribution of people composed into an outfit to the under-
lying demographics.
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6. Supplementary
Below we present additional network and ablation de-

tails, as well as more results. Please refer to the supple-
mentary video to see a visualization of the results on the
same person. It clearly shows how the identity is preserved
while shirts and pants switch.

6.1. Implementation Details

The final loss function used for both generated and real
image try-on is in Eq. 10.

L = α1Llocalization + α2Lgarment + α3Lidentity (10)

We performed a hyperparameter search over the loss term
weights. For generated images, we used α1 = 0.01, α2 =
1, and α3 = 0.2. For real images, we used α1 = 0.01,
α2 = 1, and α3 = 1.0.

The try-on optimization method was run for 2,000 itera-
tions for both real and generated images. The real images
were first projected into the StyleGAN2 latent space. The
projection optimization was also run for 2,000 iterations per
image.

6.2. Additional Results

Figure 11 shows examples of the high-resolution images
and the segmentations outputted from our pose-conditioned
StyleGAN2. Our network outputs both RGB images and
corresponding segmentations with 9 labels (background,
tops, bottoms, face, hair, arms, torso/skin, legs, other).

In Figure 12, we demonstrate that the pose-conditioning
part of our model is able to synthesize the same style in a
variety of poses.

Figure 13 shows additional shirt try-on results for gen-
erated images. Our method is able to transfer all types
of necklines, sleeve shapes, and sleeve lengths for various
body types. Additionally, our method is able to preserve
identity and synthesize skin correctly when changing from
a long to short-sleeved shirt.

In Figures 14 and 15, we show try-on results for real im-
ages. These images are first projected into our StyleGAN2
latent space. Projection is a pre-processing step and a direc-
tion of future work. It is a current limitation of our method
as some of the garment details get lost in projection. Our
results show that our method is able to synthesize the cor-
rect color and shape of the garments across poses while pre-
serving identity. Improving projection would improve the
details and textures, resulting in the quality shown in e.g.,
Figure 4. The quality of our core method (the network ar-
chitecture and interpolation optimization) is best evaluated
by looking on generated images.
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Figure 11: We train a pose-conditioned StyleGAN2 network to output segmentations in addition to RGB images. The figure
shows our typical generated images and their corresponding segmentation.
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Figure 12: Our method can synthesize the same style shirt for varied poses and body shapes by fixing the style vector. We
present several different styles in multiple poses. In this figure, each row is a fixed style, and each column in a fixed pose and
body shape.
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Figure 13: Results. We present 6 examples, note the difference in body shape, skin color, types of shirts.
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Figure 14: Results from our method for shirt try-on on real images. See text for explanation of real vs generated images.
Note how try-on works well with different body shapes, and adjusts to the new poses. Some details are missing from the
garment due to artifacts in projection, however the overall shape is well preserved.
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Figure 15: Results from our method for pants try-on on real images. See text for explanation of real vs generated images.
Note how try-on works well with different body shapes, and adjusts to the new poses. Some details are missing from the
garment due to artifacts in projection, however the overall shape is well preserved.

15


